Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
J Agric Food Chem ; 72(15): 8715-8730, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564531

RESUMO

Wuyi Rock tea, specifically Shuixian and Rougui, exhibits distinct sensory characteristics. In this study, we investigated the sensory and metabolite differences between Shuixian and Rougui. Quantitative description analysis revealed that Rougui exhibited higher intensity in bitter, thick, harsh, and numb tastes, while Shuixian had stronger salty and umami tastes. Nontargeted metabolomics identified 151 compounds with 66 compounds identified as key differential metabolites responsible for metabolic discrimination. Most of the catechins and flavonoids were enriched in Rougui tea, while epigallocatechin-3,3'-di-O-gallate, epigallocatechin-3,5-di-O-gallate, gallocatechin-3,5-di-O-gallate, isovitexin, and theaflavanoside I were enriched in Shuixian tea. Catechins, kaempferol, quercetin, and myricetin derivatives were positively correlated with bitter taste and numb sensation. Sour taste was positively correlated to organic acids. Amino acids potentially contributed to salty and umami tastes. These results provide further insights into the taste characteristics and the relationship between taste attributes and specific metabolites in Wuyi Rock tea.


Assuntos
Catequina , Paladar , Chá/química , 60705 , Cromatografia Líquida , Espectrometria de Massas em Tandem , Metabolômica/métodos
2.
Anal Chem ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666489

RESUMO

Quantitative glycosylation analysis serves as an effective tool for detecting changes in glycosylation patterns in cancer and various diseases. However, compared with N-glycans, O-glycans present challenges in both qualitative and quantitative mass spectrometry analysis due to their low abundance, ease of peeling, lack of a universal enzyme, and difficult accessibility. To address this challenge, we developed O-GlycoIsoQuant, a novel O-glycome quantitative approach utilizing superbase release and isotopic Girard's P labeling. This method facilitates rapid and efficient nonreducing ß-elimination to dissociate O-glycans from proteins using the organic superbase, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), combined with light and heavy isotopic Girard's reagent P (GP) labeling for relative quantification of O-glycans by mass spectrometry. Employing this method, labeled O-glycans exhibit a double peak with a mass difference of 5 Da, suitable for stable relative quantification. The O-GlycoIsoQuant method is characterized by its high labeling efficiency, excellent reproducibility (CV < 20%), and good linearity (R2 > 0.99), across a dynamic range spanning a 100-fold range. This method was applied to various complex sample types, including human serum, porcine spermatozoa, human saliva, and urinary extracellular vesicles, detecting 33, 39, 49, and 37 O-glycans, respectively, thereby demonstrating its broad applicability.

3.
J Agric Food Chem ; 72(15): 8760-8773, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38536213

RESUMO

Roasting is pivotal for enhancing the flavor of Wuyi rock tea (WRT). A study investigated a novel compound that enhances the umami taste of WRT. Metabolomics of Shuixian tea (SXT) and Rougui tea (RGT) under light roasting (LR), medium roasting (MR), and heavy roasting (HR) revealed significant differences in nonvolatiles compounds. Compared LR reducing sugars and amino acids notably decreased in MR and HR, with l-alanine declining by 69%. Taste-guided fractionation identified fraction II-B as having high umami and sweet intensities. A surprising taste enhancer, N-(1-carboxyethyl)-6-(hydroxymethyl) pyridinium-3-ol (alapyridaine), was discovered and identified. It formed via the Maillard reaction, positively correlated with roasting in SXT and RGT. Alapyridaine levels were highest in SXT among the five oolong teas. Roasting tea with glucose increased alapyridaine levels, while EGCG inhibited its formation. HR-WRT exhibited enhanced umami and sweet taste, highlighting alapyridaine's impact on WRT's flavor profile. The formation of alapyridaine during the roasting process provides new insights into the umami and sweet perception of oolong tea.


Assuntos
Alanina/análogos & derivados , Reação de Maillard , Piridinas , Paladar , Alanina/química , Chá
4.
Anal Chem ; 96(13): 5125-5133, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38502245

RESUMO

Protein modification by lipid-derived electrophiles (LDEs) is associated with various signaling pathways. Among these LDEs, 4-hydroxy-2-nonenal (HNE) is the most toxic, and protein modified with HNE has been linked to various diseases, including Alzheimer's and Parkinson's. However, due to their low abundance, in-depth profiling of HNE modifications still presents challenges. This study introduces a novel strategy utilizing reversible thiazolidine chemistry to selectively capture HNE-modified proteins and a palladium-mediated cleavage reaction to release them. Thousands of HNE-modified sites in different cell lines were identified. Combined with ABPP, we discovered a set of HNE-sensitive sites that offer a new tool for studying LDE modifications in proteomes.


Assuntos
Aldeídos , Processamento de Proteína Pós-Traducional , Tiazolidinas , Aldeídos/metabolismo , Proteoma/metabolismo , Peroxidação de Lipídeos
5.
J Agric Food Chem ; 72(14): 8126-8139, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38551387

RESUMO

A novel ß-primeverosidase-like enzyme, originating from the hypocotyl of soybeans, was isolated and characterized. This enzyme, with an estimated molecular weight of 44 kDa, was identified as a monomer and exhibited peak activity at 55 °C and pH 5.5. It demonstrated a specific and efficient hydrolysis of 1-octen-3-yl ß-primeveroside (1-octen-3-yl prim) and 3-octanyl ß-primeveroside (3-octanyl prim) but did not act on glucopyranosides. Mn2+ significantly enhanced its activity, while Zn2+, Cu2+, and Hg2+ exerted inhibitory effects. Kinetic analysis revealed a higher hydrolytic capacity toward 1-octen-3-yl prim. Partial amino acid sequences were determined and the N-terminal amino acid sequence was determined to be AIVAYAL ALSKRAIAAQ. The binding energy and binding free energy between the ß-primeverosidase enzyme and its substrates were observed to be higher than that of ß-glucosidase, thus validating its superior hydrolysis efficiency. Hydrogen bonds and hydrophobic interactions were the main types of interactions between ß-primeverosidase enzyme and 1-octen-3-yl prim and 3-octanyl prim, involving amino acid residues such as GLU-470, TRP-463, GLU-416, TRP-471, GLN-53, and GLN-477 (hydrogen bonds) and PHE-389, TYR-345, LEU-216, and TYR-275 (hydrophobic interactions). This study contributes to the application of a ß-primeverosidase-like enzyme in improving the release efficiency of glycosidically conjugated flavor substances.


Assuntos
Soja , Hipocótilo , Hipocótilo/metabolismo , Cinética , Glicosídeo Hidrolases/metabolismo
6.
Mater Today Bio ; 25: 101015, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38500557

RESUMO

The process of bone regeneration is intricately regulated by various cytokines at distinct stages. The establishment of early and efficient vascularization, along with the maintenance of a sustained osteoinductive microenvironment, plays a crucial role in the successful utilization of bone repair materials. This study aimed to develop a composite hydrogel that would facilitate the creation of an osteogenic microenvironment for bone repair. This was achieved by incorporating an early rapid release of VEGF and a sustained slow release of BMP-2. Herein, the Schiff base was formed between VEGF and the composite hydrogel, and VEGF could be rapidly released to promote vascularization in response to the early acidic bone injury microenvironment. Furthermore, the encapsulation of BMP-2 within mesoporous silica nanoparticles enabled a controlled and sustained release, thereby facilitating the process of bone repair. Our developed composite hydrogel released more than 80% of VEGF and BMP-2 in the acidic medium, which was significantly higher than that in the neutral medium (about 60%). Moreover, the composite hydrogel demonstrated a significant improvement in the migratory capacity and tube formation ability of human umbilical vein endothelial cells (HUVECs). Furthermore, the composite hydrogel exhibited an augmented ability for osteogenesis, as confirmed by the utilization of ALP staining, alizarin red staining, and the upregulation of osteogenesis-related genes. Notably, the composite hydrogel displayed substantial osteoinductive properties, compared with other groups, the skull defect in the composite hydrogels combined with BMP-2 and VEGF was full of new bone, basically completely repaired, and the BV/TV value was greater than 80%. The outcomes of animal experiments demonstrated that the composite hydrogel effectively promoted bone regeneration in cranial defects of rats by leveraging the synergistic effect of an early rapid release of VEGF and a sustained slow release of BMP-2, thereby facilitating vascularized bone regeneration. In conclusion, our composite hydrogel has demonstrated promising potential for vascularized bone repair through the enhancement of angiogenesis and osteogenic microenvironment.

7.
Plant Dis ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506908

RESUMO

Lotus (Nelumbo nucifera Gaertn.) is a widely cultivated plant in China, and the fruit lotus variety has a high economic value attributed to the exquisite flavor of its fresh seeds. During the summer of 2023, an unidentified blight was observed affecting lotus seedpods in Jiande City, Zhejiang province, with approximately 65% of seedpods impacted in a 130-hectare area. The initial symptoms included dark purple spots on the lotus seedpod surface, which gradually expanded over time. After 5 to 7 days, the entire seedpod turned black, withering, and rendering the lotus seeds inedible. To identify the causal agent, tissues from symptomatic seedpods were excised and disinfected in 75% ethanol for 60 s, and washed twice in sterile distilled water. The disinfected symptomatic tissues (5 × 5 mm) were plated on potato dextrose agar (PDA), incubated at 25 ℃, transferred hyphal tips to obtain pure isolates after 3 days. Fungal colonies exhibiting Botryosphaeriaceae morphology were isolated from 33% of the samples (n = 15). Pure cultures were grown on PDA for both morphological and molecular identification. The colonies displayed a white aerial mycelium, turning olivaceous grey after 7 days. Pycnidia were produced within 3 weeks on PDA with added sterilized healthy lotus seedpod pieces on the surface. Conidia were hyaline, unicellular, ellipsoidal, 12.65 to 20.72 × 3.92 to 9.38 µm in size (mean 16.67 × 6.24 µm, n = 100). To determine the fungal species, genomic DNA was extracted from one representative isolate (ZJUP1112-1), to amplify four gene loci through polymerase chain reactions (PCR): rDNA internal transcribed spacer (ITS) with primers ITS1/ITS4, rDNA large subunit (LSU) with LR0R/LR5, the translation elongation factor 1-alpha gene (tef1) with EF1-728F/EF1-986R, and ß-tubulin gene (tub2) with Bt2a/Bt2b. The PCR products were Sanger sequenced in Zhejiang Shangya biotechnology co., LTD, and the resulting sequences were assembled and deposited in GenBank (ITS: OR740546; LSU: OR740547; tef1: OR776996; tub2: OR776997). BLAST searches indicated the highest nucleotide sequence identity with the reference strains of Neofusicoccum parvum CMW 9081 (ITS: 98.8%, AY236943; LSU: 100%, AY928045; tef1: 99.6%, AY236888; tub2: 99.3%, AY236917). Multi-locus phylogenetic analyses revealed that isolate ZJUP1112-1 formed a highly supported clade with N. parvum. Pathogenicity tests were performed on healthy lotus seedpods using mycelial plugs (5 mm diameter) from actively growing colonies of ZJUP1112-1 that were placed onto the front and side of the seedpods (6 each). Controls received PDA plugs. Treated seedpods were wrapped with parafilm and incubated at 25 ℃ and the experiment was repeated three times. After 5 days, dark purple lesions were observed on the inoculated seedpods, whereas controls remained symptomless. The same isolate was recovered from the margin of resulting lesions and confirmed by morphology, thus fulfilling Koch's postulates. N. parvum is a polyphagous pathogen causing blights and fruit rot on multiple economically important fruit crops, such as cacao (Puig et al. 2019), walnut (Chen et al. 2019), pistachio (Lopez-Moral et al. 2020), chestnut (Seddaiu et al. 2021), blueberry (Spetik et al. 2023) and mango (Polizzi et al. 2022), among others. To the best of our knowledge, this is the first report of N. parvum causing seedpod blight on lotus seedpods in China, which contributes to a better understanding of the pathogens affecting this plant species in China.

8.
Environ Sci Pollut Res Int ; 31(13): 20246-20257, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372921

RESUMO

An effective way to reduce herbicide quantity is to use adjuvants in order to optimize the amount of herbicide and improve its control efficiency. In order to screen for efficient herbicide tank-mix adjuvants, improve the control of weeds in maize fields, reduce the amount of effective ingredients, and improve the adsorption and digestion behavior of herbicides in soil, this study evaluated the synergistic effects and soil behavior of four types of tank-mix adjuvants combined with herbicides. Different types of adjuvants can enhance herbicide production. Surface tension was significantly reduced by 13% after the pesticide solution was applied with AgroSpred™ Prime. The contact angle with the foliar surface was significantly reduced and solution wettability improved using Atp Lus 245-LQ-(TH). The permeability of topramezone and atrazine in leaves of Amaranthus retroflexus L. and Digitaria sanguinalis (L.) Scop. was increased by 22-96% after adding either tank-mix adjuvant. The solution drying time and maximum retention on leaves were not affected by the tank-mix adjuvants. Ethyl and methylated vegetable oils can reduce the adsorption of topramezone in the soil, thus reducing its half-life in soil. The tank-mix adjuvants had no significant effect on soil dissipation or adsorption of atrazine. AgroSpred™ Prime and Atp Lus 245-LQ-(TH) have the best synergistic effect on topramezone and atrazine in the control of A. retroflexus L. and D. sanguinalis (L.) Scop. in maize fields.


Assuntos
Atrazina , Herbicidas , Pirazóis , Herbicidas/análise , Adjuvantes Imunológicos , Solo , Zea mays , Trifosfato de Adenosina
9.
Nanomaterials (Basel) ; 14(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38334579

RESUMO

Micro-LED arrays exhibit high brightness, a long lifespan, low power consumption, and a fast response speed. In this paper, we have proposed a series-biased micro-LED array by using a nitride layer with multi-quantum wells epitaxial on sapphire substrate. The III-nitride multiple quantum wells serving as the micro-LED active material enable both luminescence and detection functionalities. The micro-LED array combines lighting, detection, and communication capabilities. We have conducted a thorough analysis of the micro-LED array's optoelectronic features in both lighting and detection modes. We also explore visible light communication performance across different arrangements of single micro-LED devices within the series-biased array. Our research achieves 720p video transmission via visible light communication using the micro-LED array, supporting a communication rate of up to 10 Mbps. Our contributions encompass the successful integration of lighting and detection functions and a comprehensive assessment of optoelectronic and communication performance. This study highlights the multifunctional micro-LED array's potential as a transceiver terminal in visible light communication systems, expanding its applications from smart lighting to visible light communication and photonic integrated chips. These innovations enhance our understanding of micro-LED technology and its versatile applications.

10.
Plant Dis ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386298

RESUMO

In June 2023, a sudden outbreak root rot and vine decline symptoms was observed during a watermelon (Citrullus lanatus T.) variety demonstration trial located in Taizhou City, Zhejiang Province, China, with an incidence rate ranging from 75% to 100% and an affected area of nearly 2,000 square meters. The disease initially appeared with a rapid and alarming invasion of root rot and vine decline symptoms within watermelon plants. Affected plants exhibited rapid deterioration, showing symptoms of wilting, yellowing and eventual demise, predominantly during the pre-harvest stage. Notably, numerous black, spherical, erumpent perithecia were clearly visible on the watermelon's root epidermis, a characteristic trait of the disease. Symptomatic plant samples were rigorously disinfected with 75% ethanol, and plated on potato dextrose agar medium for incubation at 25°C, successfully isolate two potential strains. These isolates were inoculated in oatmeal agar and incubated in a 25℃ light incubator. After 30 days, mature perithecia, the same as those found on the watermelon's root epidermis, reached a diameter of 500 µm. Each perithecium contained several pear-shaped asci, 56 to 108.5 µm in length and 30.5 to 46.4 µm in width, typically holding 1, rarely 2 ascospores. These characteristics align precisely with the typical strains of Monosporascus cannonballus Pollack and Uecker (1974). Additionally, sequencing the internal transcribed spacer region of ribosomal DNA (ITS) gene (White et al., 1990), large subunit ribosomal RNA (LSU) gene (Rehner and Samuels 1995), and beta-tubulin (TUB) gene (Glass and Donaldson, 1995) were performed. BLAST analysis indicated the highest nucleotide sequence identity with M. cannonballus CBS 586.93 reference sequence (ITS: 100%, JQ771930; TUB: 98.99%, JQ907292). Representative sequences of isolate ZJUP0990-2 from these regions were deposited in GenBank (Accession No.: OR357656 for ITS; OR474500 for LSU; OR365762 for TUB). A multigene phylogenomic analysis (ITS-LSU-TUB) was undertaken to ascertain the exact phylogenetic position of M. cannonballus within the genus Monosporascus. The amalgamation of both morphological and molecular insights consistently reaffirmed the accurate classification of the causative agent as M. cannonballus. To validate the pathogenicity of M. cannonballus, a controlled greenhouse experiment was conducted using watermelon (cv. Nabite) as the subject. Mycelium fragments, harvested from the edge of the colony ZJUP0990-2, were inoculated into oat liquid medium and cultivated under dark conditions at a consistent temperature of 30°C for 7 days. After 20 days, the inoculated plants exhibited root rot and wilting, mirroring the symptoms observed during the field outbreak. In contrast, the control plants did not exhibit any signs of disease. M. cannonballus was successfully re-isolated from the symptomatic roots of the inoculated plants, satisfying Koch's postulates. This experiment was repeated three times. This pathogenic fungus has previously been documented as a menace to melons in various regions including Mexico (Chew-Madinaveitia et al., 2012) and Brazil (Sales et al., 2004), as well as watermelons in Brazil (Sales et al., 2010), northern Mexico (Gaytan-Mascorro et al., 2012), and Saudi Arabia (Karlatti et al., 1997). To our knowledge, this is the first reported presence of M. cannonballus on watermelons in China. This new disease poses a serious threat to watermelon production, potentially leading to severe economic losses and impacting food security.

11.
Chin J Nat Med ; 22(2): 137-145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38342566

RESUMO

Excessive oxidative stress impairs cartilage matrix metabolism balance, significantly contributing to osteoarthritis (OA) development. Celastrol (CSL), a drug derived from Tripterygium wilfordii, has recognized applications in the treatment of cancer and immune system disorders, yet its antioxidative stress mechanisms in OA remain underexplored. This study aimed to substantiate CSL's chondroprotective effects and unravel its underlying mechanisms. We investigated CSL's impact on chondrocytes under both normal and inflammatory conditions. In vitro, CSL mitigated interleukin (IL)-1ß-induced activation of proteinases and promoted cartilage extracellular matrix (ECM) synthesis. In vivo, intra-articular injection of CSL ameliorated cartilage degeneration and mitigated subchondral bone lesions in OA mice. Mechanistically, it was found that inhibiting nuclear factor erythroid 2-related factor 2 (NRF2) abrogated CSL-mediated antioxidative functions and exacerbated the progression of OA. This study is the first to elucidate the role of CSL in the treatment of OA through the activation of NRF2, offering a novel therapeutic avenue for arthritis therapy.


Assuntos
Fator 2 Relacionado a NF-E2 , Osteoartrite , Camundongos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/metabolismo , Condrócitos , Interleucina-1beta
12.
Brain Res Bull ; 208: 110888, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295883

RESUMO

Neuroinflammation induced by chronic cerebral hypoperfusion (CCH) plays a crucial role in the pathophysiologic mechanisms of vascular dementia (VD). A growing body of research has found that intestinal microbiota is associated with a variety of central nervous system disorders and that there is a relationship between intestinal microbiota dysbiosis and cognitive dysfunction and inflammatory responses. Baicalein belongs to the class of flavonoids and has a variety of biological functions, including anti-inflammatory, antioxidant and anti-apoptotic. Baicalein has a significant improvement in memory and learning, and can be used as a potential drug for the protection and treatment of central nervous system disorders. Whether baicalein has an ameliorative effect on cognitive impairment in VD, and whether its mechanism is related to the inhibition of inflammatory response and regulation of intestinal microbiota has not been reported. We used bilateral common carotid artery occlusion (BCCAO) to establish a VD rat model. Morris water maze (MWM) test showed that baicalein improved cognitive dysfunction in VD rats. We applied HE staining, immunofluorescence and ELISA to observe that baicalein treatment significantly improved CCH-induced neuronal damage in the CA1 region of the hippocampus, and reduced glial cell activation and release of pro-inflammatory factors. Western blot showed that baicalein inhibited the activation of the TLR4/MyD88/NF-κB signaling pathway in VD rats. We applied 16 S rDNA sequencing to analyze the composition of the intestinal microbiota. The results showed that baicalein modulated the diversity and composition of the intestinal microbiota, and suppressed the relative abundance of inflammation-associated microbiota in VD rats. In conclusion, this study found that baicalein ameliorated cognitive impairment, attenuated hippocampal inflammatory responses, inhibited the TLR4/MyD88/NF-κB signaling pathway, and modulated intestinal microbiota in VD rats.


Assuntos
Isquemia Encefálica , Disfunção Cognitiva , Demência Vascular , Flavanonas , Microbioma Gastrointestinal , Ratos , Animais , Demência Vascular/tratamento farmacológico , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Isquemia Encefálica/metabolismo
13.
Sci Total Environ ; 912: 169055, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056663

RESUMO

Characteristics extraction and anomaly analysis based on frequency spectrum can provide crucial support for source apportionment of PM2.5 pollution. In this study, an effective source apportionment framework combining the Fast Fourier Transform (FFT)- and Continuous Wavelet Transform (CWT)-based spectral analyses and Positive Matrix Factorization (PMF) receptor model is developed for spectrum characteristics extraction and source contribution assessment. The developed framework is applied to Beijing during the winter heating period with 1-h time resolution. The spectrum characteristics of anomaly frequency, location, duration and intensity of PM2.5 pollution can be captured to gain an in-depth understanding of source-oriented information and provide necessary indicators for reliable PMF source apportionment. The combined analysis demonstrates that the secondary inorganic aerosols make relatively high contributions (50.59 %) to PM2.5 pollution during the winter heating period in Beijing, followed by biomass burning, vehicle emission, coal combustion, road dust, industrial process and firework emission sources accounting for 15.01 %, 11.00 %, 10.70 %, 5.31 %, 3.88 %, and 3.51 %, respectively. The source apportionment result suggests that combining frequency spectrum characteristics with source apportionment can provide consistent rationales for understanding the temporal evolution of PM2.5 pollution, identifying the potential source types and quantifying the related contributions.

14.
J Sci Food Agric ; 104(3): 1630-1637, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37842747

RESUMO

BACKGROUND: In the contemporary food industry, accurate and rapid differentiation of oolong tea varieties holds paramount importance for traceability and quality control. However, achieving this remains a formidable challenge. This study addresses this lacuna by employing machine learning algorithms - namely support vector machines (SVMs) and convolutional neural networks (CNNs) - alongside computer vision techniques for the automated classification of oolong tea leaves based on visual attributes. RESULTS: An array of 13 distinct characteristics, encompassing color and texture, were identified from five unique oolong tea varieties. To fortify the robustness of the predictive models, data augmentation and image cropping methods were employed. A comparative analysis of SVM- and CNN-based models revealed that the ResNet50 model achieved a high Top-1 accuracy rate exceeding 93%. This robust performance substantiates the efficacy of the implemented methodology for rapid and precise oolong tea classification. CONCLUSION: The study elucidates that the integration of computer vision with machine learning algorithms constitutes a promising, non-invasive approach for the quick and accurate categorization of oolong tea varieties. The findings have significant ramifications for process monitoring, quality assurance, authenticity validation and adulteration detection within the tea industry. © 2023 Society of Chemical Industry.


Assuntos
Algoritmos , Redes Neurais de Computação , Aprendizado de Máquina , Máquina de Vetores de Suporte , Chá
15.
Plants (Basel) ; 12(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38068638

RESUMO

ALBINO3 (ALB3) protein functions in the insertion and assembly of thylakoid membrane protein complexes and plays a critical role for chloroplast development in Arabidopsis. However, the biological function of ALB3 homologs in rice, OsALB3, remains elusive. Here, we identified a rice mutant, yellow leaf and lethal1 (yll1), that displayed yellow leaves and died at the seedling stage. The content of chlorophyll in yll1, compared with wild type, was significantly decreased. Transmission electron microscopy observation shows that the chloroplast of yll1 lacks thylakoid membranes. The causal mutation, which is located in OsALB3, was isolated by Mutmap+ combined with a simple mutation filtering process. Knockout of OsALB3 leads to yellow leaves and seedling lethality, mimicking the phenotype of yll1. OsALB3 is widely expressed and OsALB3 is chloroplast-localized. Moreover, the content of light-harvesting chlorophyll-binding proteins in yll1 is reduced. Together, our study demonstrated the essential role of OsALB3 in chloroplast development and provided clues to the possible conserved molecular function of ALB3 in rice.

16.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069016

RESUMO

In order to optimize crop production and mitigate the adverse impacts associated with the utilization of chemical agents, it is necessary to explore new biocontrol agents. Bacillus velezensis has been widely studied as a biocontrol agent because of its efficient and ecofriendly plant disease control mechanisms. This study shows that the strain ZN-S10 effectively reduces the area of leaf spots caused by the pathogen Colletotrichum changpingense ZAFU0163-1, which affects conidia production and germination, inhibits mycelium growth, and induces mycelium deformation. In antifungal experiments with crude extracts, we observed a delay in the cell cycle of conidia, which may be responsible for the inhibition of conidial germination. Among the bioactive metabolites detected through integrated LC-MS- and GC-MS-based untargeted metabolomics, 7-O-Succinyl macrolactin A, telocinobufagin, and surfactin A may be the main antifungal metabolites of strain ZN-S10. The presence of 7-O-Succinyl macrolactin A could explain the cell damage in germ tubes. This is the first report of telocinobufagin detected in B. velezensis. These results are significant for understanding the inhibitory mechanisms employed by B. velezensis and should serve as a reference in the production of biocontrol agents.


Assuntos
Antifúngicos , Bacillus , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Bacillus/metabolismo , Plantas/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
17.
Food Chem X ; 20: 100892, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144723

RESUMO

Advances in grinding strategies have been beneficial to eliminating the off-flavor of soymilk and improving the quality soy products. Herein, four grinding processing, dry-blanching grinding (D-BG), wet-blanching grinding (W-BG), wet-anaerobic grinding (W-AG) and traditional grinding (TG) were employed and found to impose a significant impact on off-flavor components, accompanied by changes of hydroperoxides and free radicals. The results showed that all three methods could significantly hinder the formation of C6 aldehydes. C8 Alcohols and (E)-2-heptenal could be removed by D-BG, but lipids in dehulled soybean were prefer to be oxidized during storage, resulting in the accumulation of hydroperoxides and radicals. W-BG and W-AG have higher levels of 1-octen-3-ol, and soaking at an alkaline pH and increasing the number of rinses is beneficial for its removal. Gas chromatography-olfaction-mass spectrometry (GC-O-MS) combined with sensory evaluation showed that off-flavor profile of d-BGS, W-BGS and W-AGS was different. D-BG and W-AG possessed better flavor quality.

18.
J Agric Food Chem ; 71(49): 19324-19332, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38019973

RESUMO

The absorption, transport, and subcellular distribution of strobilurin fungicides (azoxystrobin, pyraclostrobin, and trifloxystrobin) have been studied in cucumbers. Under hydroponic laboratory conditions, pyraclostrobin and trifloxystrobin mainly accumulated in cucumber roots whereas azoxystrobin accumulated in cucumber leaves. In the subcellular distribution experiment, azoxystrobin mainly accumulated as a soluble component. Pyraclostrobin and trifloxystrobin accumulated more in the organelles and cell walls. Azoxystrobin and pyraclostrobin enter the root primarily through the apoplast pathway, whereas trifloxystrobin enters the root through the symplastic pathway. Azoxystrobin can be transported in cucumber through anion and cation channels, whereas pyraclostrobin and trifloxystrobin can be transported only through anion channels. This study has great significance in evaluating environmental risks and food safety.


Assuntos
Cucumis sativus , Fungicidas Industriais , Estrobilurinas , Fungicidas Industriais/farmacologia , Ânions
19.
Plants (Basel) ; 12(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37896099

RESUMO

Tomato pith necrosis (TPN) is a highly destructive disease caused by species of the Pseudomonas genus and other bacteria, resulting in a significant reduction in tomato yield. Members of the genus Bacillus are beneficial microorganisms extensively studied in the rhizosphere. However, in most cases, the potential of Bacillus members in controlling TPN and their impact on the rhizosphere microbial composition remain rarely studied. In this study, Bacillus velezensis ZN-S10 significantly inhibited the growth of Pseudomonas viridiflava ZJUP0398-2, and ZN-S10 controlled TPN with control efficacies of 60.31%. P. viridiflava ZJUP0398-2 significantly altered the richness and diversity of the tomato rhizobacterial community, but pre-inoculation with ZN-S10 mitigated these changes. The correlation analysis revealed that ZN-S10 maybe inhibits the growth of nitrogen-fixing bacteria and recruits beneficial bacterial communities associated with disease resistance, thereby suppressing the occurrence of diseases. In summary, the comparative analysis of the rhizosphere microbiome was conducted to explore the impact of ZN-S10 on the composition of rhizosphere microorganisms in the presence of pathogenic bacteria, aiming to provide insights for further research and the development of scientific and eco-friendly control strategies for this disease.

20.
Analyst ; 148(20): 5002-5011, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37728433

RESUMO

Human angiotensin-converting enzyme 2 (hACE2) is the primary receptor for cellular entry of SARS-CoV-2 into human host cells. hACE2 is heavily glycosylated and glycans on the receptor may play a role in viral binding. Thus, comprehensive characterization of hACE2 glycosylation could aid our understanding of interactions between the receptor and SARS-CoV-2 spike (S) protein, as well as provide a basis for the development of therapeutic drugs targeting this crucial interaction. Herein, 138 N-glycan compositions were identified, most of which are complex-type N-glycans, from seven N-glycosites of hACE2. Among them, 67% contain at least one sialic acid residue. At the level of glycopeptides, the overall quantification of sialylated glycan isomers observed on the sites N322 and N546 have a higher degree of NeuAc (α2-3)Gal (over 80.3%) than that of other N-glycosites (35.6-71.0%). In terms of O-glycans, 69 glycan compositions from 12 O-glycosites were identified, and especially, the C-terminus of hACE2 is heavily O-glycosylated. The terminal sialic acid linkage type of H1N1S1 and H1N1S2 are covered highly with α2,3-sialic acid. These findings could aid the investigation of the interaction between SARS-CoV-2 and human host cells.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Glicosilação , Ácido N-Acetilneuramínico , Polissacarídeos/química , Ligação Proteica , SARS-CoV-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...